Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598309

RESUMO

Barley (1,3;1,4)-ß-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-ß-d-glucanase, enabling the hydrolysis of (1,3;1,4)-ß-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-ß-d-glucan endohydrolase [(1,3;1,4)-ß-d-glucanase] isoenzyme EII (HvEII) and (1,3)-ß-d-glucan endohydrolase [(1,3)-ß-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-ß-d-glucanase and one variant that hydrolyzed both (1,3)-ß-d-glucans and (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-ß-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-ß-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-ß-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-ß-d-glucans or (1,3)-ß-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-ß-d-glucans and (1,3)-ß-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.

2.
Carbohydr Res ; 538: 109103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555659

RESUMO

Callose, a linear (1,3)-ß-glucan, is an indispensable carbohydrate polymer required for plant growth and development. Advances in biochemical, genetic, and genomic tools, along with specific antibodies, have significantly enhanced our understanding of callose biosynthesis. As additional components of the callose synthase machinery emerge, the elucidation of molecular biosynthetic mechanisms is expected to follow. Short-term objectives involve defining the stoichiometry and turnover rates of callose synthase subunits. Long-term goals include generating recombinant callose synthases to elucidate their biochemical properties and molecular mechanisms, potentially culminating in the determination of callose synthase three-dimensional structure. This review delves into the structures and intricate molecular processes underlying callose biosynthesis, emphasizing regulatory elements and assembly mechanisms.


Assuntos
Plantas , beta-Glucanas , Glucanos , Glucosiltransferases/genética
3.
Chembiochem ; 25(3): e202300744, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055188

RESUMO

Hirudins, natural sulfo(glyco)proteins, are clinical anticoagulants that directly inhibit thrombin, a key coagulation factor. Their potent thrombin inhibition primarily results from antagonistic interactions with both the catalytic and non-catalytic sites of thrombin. Hirudins often feature sulfate moieties on Tyr residues in their anionic C-terminus region, enabling strong interactions with thrombin exosite-I and effectively blocking its engagement with fibrinogen. Although sulfotyrosines have been identified in various hirudin variants, the precise relationship between sulfotyrosine and the number of negatively charged amino acids within the anionic-rich C-terminus peptide domain for the binding of thrombin has remained elusive. By using Fmoc-SPPS, hirudin dodecapeptides homologous to the C-terminus of hirudin variants from various leech species were successfully synthesized, and the effect of sulfotyrosine and the number of negatively charged amino acids on hirudin-thrombin interactions was investigated. Our findings did not reveal any synergistic effect between an increasing number of sulfotyrosines or negatively charged amino acids and their inhibitory activity on thrombin or fibrinolysis in the assays, despite a higher binding level toward thrombin in the sulfated dodecapeptide Hnip_Hirudin was observed in SPR analysis.


Assuntos
Hirudinas , Trombina , Tirosina/análogos & derivados , Hirudinas/farmacologia , Hirudinas/química , Hirudinas/metabolismo , Aminoácidos , Peptídeos/farmacologia , Sítios de Ligação
4.
Nat Commun ; 14(1): 4526, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500617

RESUMO

(1,3;1,4)-ß-D-Glucans are widely distributed in the cell walls of grasses (family Poaceae) and closely related families, as well as some other vascular plants. Additionally, they have been found in other organisms, including fungi, lichens, brown algae, charophycean green algae, and the bacterium Sinorhizobium meliloti. Only three members of the Cellulose Synthase-Like (CSL) genes in the families CSLF, CSLH, and CSLJ are implicated in (1,3;1,4)-ß-D-glucan biosynthesis in grasses. Little is known about the enzymes responsible for synthesizing (1,3;1,4)-ß-D-glucans outside the grasses. In the present study, we report the presence of (1,3;1,4)-ß-D-glucans in the exopolysaccharides of the Gram-positive bacterium Romboutsia ilealis CRIBT. We also report that RiGT2 is the candidate gene of R. ilealis that encodes (1,3;1,4)-ß-D-glucan synthase. RiGT2 has conserved glycosyltransferase family 2 (GT2) motifs, including D, D, D, QXXRW, and a C-terminal PilZ domain that resembles the C-terminal domain of bacteria cellulose synthase, BcsA. Using a direct gain-of-function approach, we insert RiGT2 into Saccharomyces cerevisiae, and (1,3;1,4)-ß-D-glucans are produced with structures similar to those of the (1,3;1,4)-ß-D-glucans of the lichen Cetraria islandica. Phylogenetic analysis reveals that putative (1,3;1,4)-ß-D-glucan synthase candidate genes in several other bacterial species support the finding of (1,3;1,4)-ß-D-glucans in these species.


Assuntos
Glucanos , beta-Glucanas , Humanos , Filogenia , beta-Glucanas/química , Polissacarídeos , Poaceae/genética , Parede Celular
5.
Planta ; 257(2): 39, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650257

RESUMO

MAIN CONCLUSION: The xyloglucans of all aquatic Araceae species examined had unusual structures compared with those of other non-commelinid monocotyledon families previously examined. The aquatic Araceae species Lemna minor was earlier shown to have xyloglucans with a different structure from the fucogalactoxyloglucans of other non-commelinid monocotyledons. We investigated 26 Araceae species (including L. minor), from five of the seven subfamilies. All seven aquatic species examined had xyloglucans that were unusual in having one or two of three features: < 77% XXXG core motif [L. minor (Lemnoideae) and Orontium aquaticum (Orontioideae)]; no fucosylation [L. minor (Lemnoideae), Cryptocoryne aponogetonifolia, and Lagenandra ovata (Aroideae, Rheophytes clade)]; and > 14% oligosaccharide units with S or D side chains [Spirodela polyrhiza and Landoltia punctata (Lemnoideae) and Pistia stratiotes (Aroideae, Dracunculus clade)]. Orontioideae and Lemnoideae are the two most basal subfamilies, with all species being aquatic, and Aroideae is the most derived. Two terrestrial species [Dieffenbachia seguine and Spathicarpa hastifolia (Aroideae, Zantedeschia clade)] also had xyloglucans without fucose indicating this feature was not unique to aquatic species.


Assuntos
Araceae , Glucanos , Xilanos , Oligossacarídeos
6.
Carbohydr Res ; 521: 108662, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099721

RESUMO

Polygonatum odoratum is a perennial rhizomatous medicinal plant and different plant parts have been used in the treatment of various ailments. Herein, we have investigated the structural compositions of rhizome, leaf, and stem cell walls. We found 30-44% of polysaccharides in these wall preparations were cyclohexanediaminetetraacetic acid (CDTA) extractable, the proportion of heteromannans (HMs) in the rhizome is nearly three-fold compared to that of the leave and stem. The pectic polysaccharides of the rhizome are also structurally more diverse, with arabinans and type I and type II arabinogalactans being richest as shown by linkage study of the sodium carbonate (Na2CO3) extract. In addition, the 2-linked Araf was rhizome-specific, suggesting the cell walls in the rhizome had adapted to a more complex structure compared to that of the leaf and stem. Water-soluble polysaccharide fractions were also investigated, high proportion of Man as in 4-linked Manp indicated high proportion of HMs. The 21.4 kDa pectic polysaccharides and HMs derived from rhizome cell walls induced specific immune response in mice macrophage cells producing IL-1α and hematopoietic growth factors GM-CSF and G-CSF in vitro.


Assuntos
Polygonatum , Animais , Parede Celular , Fator Estimulador de Colônias de Granulócitos/análise , Fator Estimulador de Colônias de Granulócitos e Macrófagos/análise , Camundongos , Extratos Vegetais/química , Folhas de Planta , Plantas , Polygonatum/química , Polissacarídeos/análise , Polissacarídeos/farmacologia , Rizoma/química , Água/análise
7.
J Agric Food Chem ; 70(32): 9941-9947, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921143

RESUMO

To transform cellulose from biomass into fermentable sugars for biofuel production requires efficient enzymatic degradation of cellulosic feedstocks. The recently discovered family of oxidative enzymes, lytic polysaccharide monooxygenase (LPMO), has a high potential for industrial biorefinery, but its energy efficiency and scalability still have room for improvement. Hematite (α-Fe2O3) can act as a photocatalyst by providing electrons to LPMO-catalyzed reactions, is low cost, and is found abundantly on the Earth's surface. Here, we designed a composite enzymatic photocatalysis-Fenton reaction system based on nano-α-Fe2O3. The feasibility of using α-Fe2O3 nanoparticles as a composite catalyst to facilitate LPMO-catalyzed cellulose oxidative degradation in water was tested. Furthermore, a light-induced Fenton reaction was integrated to increase the liquefaction yield of cellulose. The innovative approach finalized the cellulose degradation process with a total liquefaction yield of 93%. Nevertheless, the complex chemical reactions and products involved in this system require further investigation.


Assuntos
Celulose , Oxigenases de Função Mista , Celulose/metabolismo , Compostos Férricos , Proteínas Fúngicas/metabolismo , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo
8.
BMC Biol ; 20(1): 137, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681203

RESUMO

BACKGROUND: ß-1,4-endoglucanase (EG) is one of the three types of cellulases used in cellulose saccharification during lignocellulosic biofuel/biomaterial production. GsCelA is an EG secreted by the thermophilic bacterium Geobacillus sp. 70PC53 isolated from rice straw compost in southern Taiwan. This enzyme belongs to glycoside hydrolase family 5 (GH5) with a TIM-barrel structure common among all members of this family. GsCelA exhibits excellent lignocellulolytic activity and thermostability. In the course of investigating the regulation of this enzyme, it was fortuitously discovered that GsCelA undergoes a novel self-truncation/activation process that appears to be common among GH5 enzymes. RESULTS: Three diverse Gram-positive bacterial GH5 EGs, but not a GH12 EG, undergo an unexpected self-truncation process by removing a part of their C-terminal region. This unique process has been studied in detail with GsCelA. The purified recombinant GsCelA was capable of removing a 53-amino-acid peptide from the C-terminus. Natural or engineered GsCelA truncated variants, with up to 60-amino-acid deletion from the C-terminus, exhibited higher specific activity and thermostability than the full-length enzyme. Interestingly, the C-terminal part that is removed in this self-truncation process is capable of binding to cellulosic substrates of EGs. The protein truncation, which is pH and temperature dependent, occurred between amino acids 315 and 316, but removal of these two amino acids did not stop the process. Furthermore, mutations of E142A and E231A, which are essential for EG activity, did not affect the protein self-truncation process. Conversely, two single amino acid substitution mutations affected the self-truncation activity without much impact on EG activities. In Geobacillus sp. 70PC53, the full-length GsCelA was first synthesized in the cell but progressively transformed into the truncated form and eventually secreted. The GsCelA self-truncation was not affected by standard protease inhibitors, but could be suppressed by EDTA and EGTA and enhanced by certain divalent ions, such as Ca2+, Mg2+, and Cu2+. CONCLUSIONS: This study reveals novel insights into the strategy of Gram-positive bacteria for directing their GH5 EGs to the substrate, and then releasing the catalytic part for enhanced activity via a spontaneous self-truncation process.


Assuntos
Celulase , Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Celulase/química , Celulase/genética , Celulase/metabolismo , Celulose , Estabilidade Enzimática , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Bactérias Gram-Positivas , Especificidade por Substrato
9.
Biotechnol Biofuels ; 14(1): 126, 2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059121

RESUMO

BACKGROUND: ß-Glucosidases are essential for cellulose hydrolysis by catalyzing the final cellulolytic degradation of cello-oligomers and cellobiose to glucose. D2-BGL is a fungal glycoside hydrolase family 3 (GH3) ß-glucosidase isolated from Chaetomella raphigera with high substrate affinity, and is an efficient ß-glucosidase supplement to Trichoderma reesei cellulase mixtures for the saccharification of lignocellulosic biomass. RESULTS: We have carried out error-prone PCR to further increase catalytic efficiency of wild-type (WT) D2-BGL. Three mutants, each with substitution of two amino acids on D2-BGL, exhibited increased activity in a preliminary mutant screening in Saccharomyces cerevisiae. Effects of single amino acid replacements on catalysis efficiency and enzyme production have been investigated by subsequent expression in Pichia pastoris. Substitution F256M resulted in enhancing the tolerance to substrate inhibition and specific activity, and substitution D224G resulted in increasing the production of recombinant enzyme. The best D2-BGL mutant generated, Mut M, was constructed by combining beneficial mutations D224G, F256M and Y260D. Expression of Mut M in Pichia pastoris resulted in 2.7-fold higher production of recombinant protein, higher Vmax and greater substrate inhibition tolerance towards cellobiose relative to wild-type enzyme. Surprisingly, Mut M overexpression induced the ER unfolded protein response to a level lower than that with WT D2 overexpression in P. pastoris. When combined with the T. reesei cellulase preparation Celluclast 1.5L, Mut M hydrolyzed acid-pretreated sugarcane bagasse more efficiently than WT D2. CONCLUSIONS: D2-BGL mutant Mut M was generated successfully by following directed evolution approach. Mut M carries three mutations that are not reported in other directed evolution studies of GH3 ß-glucosidases, and this mutant exhibited greater tolerance to substrate inhibition and higher Vmax than wild-type enzyme. Besides the enhanced specific activity, Mut M also exhibited a higher protein titer than WT D2 when it was overexpressed in P. pastoris. Our study demonstrates that both catalytic efficiency and productivity of a cellulolytic enzyme can be enhanced via protein engineering.

10.
Biotechnol Biofuels ; 14(1): 120, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020690

RESUMO

BACKGROUND: Lignocellulolytic enzymes are essential for agricultural waste disposal and production of renewable bioenergy. Many commercialized cellulase mixtures have been developed, mostly from saprophytic or endophytic fungal species. The cost of complete cellulose digestion is considerable because a wide range of cellulolytic enzymes is needed. However, most fungi can only produce limited range of highly bioactive cellulolytic enzymes. We aimed to investigate a simple yet specific method for discovering unique enzymes so that fungal species producing a diverse group of cellulolytic enzymes can be identified. RESULTS: The culture medium of an endophytic fungus, Daldinia caldariorum D263, contained a complete set of cellulolytic enzymes capable of effectively digesting cellulose residues into glucose. By taking advantage of the unique product inhibition property of ß-glucosidases, we have established an improved zymography method that can easily distinguish ß-glucosidase and exoglucanase activity. Our zymography method revealed that D263 can secrete a wide range of highly bioactive cellulases. Analyzing the assembled genome of D263, we found over 100 potential genes for cellulolytic enzymes that are distinct from those of the commercially used fungal species Trichoderma reesei and Aspergillus niger. We further identified several of these cellulolytic enzymes by mass spectrometry. CONCLUSIONS: The genome of Daldinia caldariorum D263 has been sequenced and annotated taking advantage of a simple yet specific zymography method followed by mass spectrometry analysis, and it appears to encode and secrete a wide range of bioactive cellulolytic enzymes. The genome and cellulolytic enzyme secretion of this unique endophytic fungus should be of value for identifying active cellulolytic enzymes that can facilitate conversion of agricultural wastes to fermentable sugars for the industrial production of biofuels.

11.
Biotechnol Biofuels ; 12: 258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31700541

RESUMO

BACKGROUND: To produce second-generation biofuels, enzymatic catalysis is required to convert cellulose from lignocellulosic biomass into fermentable sugars. ß-Glucosidases finalize the process by hydrolyzing cellobiose into glucose, so the efficiency of cellulose hydrolysis largely depends on the quantity and quality of these enzymes used during saccharification. Accordingly, to reduce biofuel production costs, new microbial strains are needed that can produce highly efficient enzymes on a large scale. RESULTS: We heterologously expressed the fungal ß-glucosidase D2-BGL from a Taiwanese indigenous fungus Chaetomella raphigera in Pichia pastoris for constitutive production by fermentation. Recombinant D2-BGL presented significantly higher substrate affinity than the commercial ß-glucosidase Novozyme 188 (N188; K m = 0.2 vs 2.14 mM for p-nitrophenyl ß-d-glucopyranoside and 0.96 vs 2.38 mM for cellobiose). When combined with RUT-C30 cellulases, it hydrolyzed acid-pretreated lignocellulosic biomasses more efficiently than the commercial cellulase mixture CTec3. The extent of conversion from cellulose to glucose was 83% for sugarcane bagasse and 63% for rice straws. Compared to N188, use of D2-BGL halved the time necessary to produce maximal levels of ethanol by a semi-simultaneous saccharification and fermentation process. We upscaled production of recombinant D2-BGL to 33.6 U/mL within 15 days using a 1-ton bioreactor. Crystal structure analysis revealed that D2-BGL belongs to glycoside hydrolase (GH) family 3. Removing the N-glycosylation N68 or O-glycosylation T431 residues by site-directed mutagenesis negatively affected enzyme production in P. pastoris. The F256 substrate-binding residue in D2-BGL is located in a shorter loop surrounding the active site pocket relative to that of Aspergillus ß-glucosidases, and this short loop is responsible for its high substrate affinity toward cellobiose. CONCLUSIONS: D2-BGL is an efficient supplement for lignocellulosic biomass saccharification, and we upscaled production of this enzyme using a 1-ton bioreactor. Enzyme production could be further improved using optimized fermentation, which could reduce biofuel production costs. Our structure analysis of D2-BGL offers new insights into GH3 ß-glucosidases, which will be useful for strain improvements via a structure-based mutagenesis approach.

12.
J Clin Microbiol ; 44(10): 3484-92, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17021071

RESUMO

Extraintestinal pathogenic (ExPEC) Escherichia coli strains of serotype O18:K1:H7 are mainly responsible for neonatal meningitis and sepsis in humans and belong to a limited number of closely related clones. The same serotype is also frequently isolated from the extraintestinal lesions of colibacillosis in poultry, but it is not well known to what extent human and avian strains of this particular serotype are related. Twenty-two ExPEC isolates of human origin and 33 isolates of avian origin were compared on the basis of their virulence determinants, lethality for chicks, pulsed-field gel electrophoresis (PFGE) patterns, and classification in the main phylogenetic groups. Both avian and human isolates were lethal for chicks and harbored similar virulence genotypes. A major virulence pattern, identified in 75% of the isolates, was characterized by the presence of F1 variant fimbriae; S fimbriae; IbeA; the aerobactin system; and genomic fragments A9, A12, D1, D7, D10, and D11 and by the absence of P fimbriae, F1C fimbriae, Afa adhesin, and CNF1. All but one of the avian and human isolates also belonged to major phylogenetic group B2. However, various subclonal populations could be distinguished by PFGE in relation to animal species and geographical origin. These results demonstrate that very closely related clones can be recovered from extraintestinal infections in humans and chickens and suggest that avian pathogenic E. coli isolates of serotype O18:K1:H7 are potential human pathogens.


Assuntos
Galinhas/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Fatores de Virulência/metabolismo , Animais , Escherichia coli/classificação , Escherichia coli/metabolismo , Humanos , Filogenia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...